GSIM is a reference framework of internationally agreed definitions, attributes and relationships that describe the pieces of information that are used in the production of official statistics (information objects).

This framework enables generic descriptions of the definition, management and use of data and metadata throughout the statistical production process.
The GSIM covers the whole statistical process. It includes information objects used in the Specify Needs phase (such as Statistical Need and Business Case) right through to information objects used in the Evaluation phase (such as Evaluation and Assessment).

A Statistical Program is the overarching, ongoing activity that an organization undertakes to produce statistics. A Statistical Program has an associated set of Statistical Program Designs that identify the methodology used for the Statistical Program.

The GSIM was designed to enable an explicit separation between the design and execution of statistical processes. The Production Group assumes that each process step will be designed during a design phase. During the production phase, Process Steps are "executed" (performed) in accordance with their design. For each Process Step that is executed, there will be a Process Step Execution Record.

The GSIM model includes rich detail on classifications. Classification management is important to statistical agencies who have complicated representations of concepts within their statistical information systems.

The model identifies different types of activities that represent the major steps in the statistical production process. These types have been specifically identified in the model but other types could be defined.

The model supports collecting data via surveys or registers. A Data Channel identifies the Instrument used to collect data and the Data Resource from which the data is collected. An Instrument is the description of the tool that will be used to collect data (for example a survey instrument).

The GSIM supports both static and dynamic dissemination outputs. This includes Products (for example publications, press releases, etc) and Representations (which may contain data, structural metadata or conceptual metadata).

The GSIM makes a distinction between unit and dimensional data. There are a number of data structure components defined by the model. These include identifier, measure and attribute components.

The GSIM supports collecting data via surveys or registers. A Data Channel identifies the Instrument used to collect data and the Data Resource from which the data is collected. An Instrument is the description of the tool that will be used to collect data (for example a survey instrument).

The GSIM supports both static and dynamic dissemination outputs. This includes Products (for example publications, press releases, etc) and Representations (which may contain data, structural metadata or conceptual metadata).

The GSIM makes a distinction between unit and dimensional data. There are a number of data structure components defined by the model. These include identifier, measure and attribute components.

The model differentiates between the objects used to conceptually describe information, and those that are representational. For example, a Variable does not contain any information on how the resulting value may be represented. This information is put into the Represented Variable. This enables the Variable definition to be reused.

The GSIM model includes rich detail on classifications. Classification management is important to statistical agencies who have complicated representations of concepts within their statistical information systems.

The GSIM covers the whole statistical process. It includes information objects used in the Specify Needs phase (such as Statistical Need and Business Case) right through to information objects used in the Evaluation phase (such as Evaluation and Assessment).

A Statistical Program is the overarching, ongoing activity that an organization undertakes to produce statistics. A Statistical Program has an associated set of Statistical Program Designs that identify the methodology used for the Statistical Program.

The GSIM was designed to enable an explicit separation between the design and execution of statistical processes. The Production Group assumes that each process step will be designed during a design phase. During the production phase, Process Steps are "executed" (performed) in accordance with their design. For each Process Step that is executed, there will be a Process Step Execution Record.

The GSIM makes a distinction between unit and dimensional data. There are a number of data structure components defined by the model. These include identifier, measure and attribute components.

The model supports collecting data via surveys or registers. A Data Channel identifies the Instrument used to collect data and the Data Resource from which the data is collected. An Instrument is the description of the tool that will be used to collect data (for example a survey instrument).

The GSIM supports both static and dynamic dissemination outputs. This includes Products (for example publications, press releases, etc) and Representations (which may contain data, structural metadata or conceptual metadata).

The GSIM makes a distinction between unit and dimensional data. There are a number of data structure components defined by the model. These include identifier, measure and attribute components.

The model differentiates between the objects used to conceptually describe information, and those that are representational. For example, a Variable does not contain any information on how the resulting value may be represented. This information is put into the Represented Variable. This enables the Variable definition to be reused.
Variable relationship